JOURNAL OF APPROXIMATION THEORY 3, 183-193 (1970)

Necessary and Sufficient Conditions
for a Compact Convex Set to be a Set of Best Approximations

PETER LINDSTROM

Boston University, Boston, Massachusetts

Received August 26, 1968

1. X will be a compact metric space, and C(X), the space of real valued
continuous functions on X. For g(x) € C(X), we define

| gx)ll = max | g(x)l.

Approximation of functions in C(X) will be by linear combinations of n
given, linearly independent continuous functions, fi(x),f3(x),..., f(X). A
linear combination of the fi(x) will be represented by a - F(x), where a€ R®
and F(x) = [fi(x), fa(%),-.., fn(x)]. Thus a - F(x) is the usual dot product.
Also, if ae R, | a | will denote (a - a)'/2

For a given g(x)e C(X), the infimum of { a - F(x) — g(x)ll as a ranges
over R™ will be denoted by N *(g).

In the parameter space, R", the set of best approximations, (B.4.),, for
g(x), is defined by

(BA), =[ac R : | a-Flx) — gx)ll = N*g))

It is known that (B.4.), is a nonempty compact convex set. This suggests
an inverse problem which we will solve. But first,

DErINITION 1.1, A set SCR" is called a set of best approximations
if there exists a g(x) € C(X) such that S = (B.4.),.

ProBLEM 1.2. Given a compact convex set SC R®, what conditions,
imposed on F(x), are necessary and sufficient for S to be a set of best
approximations.

In the process of solving problem (1.2), we will solve a slightly more
general problem. It is

ProBLEM 1.3, Given a compact convex set S and a constant K, what
183
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conditions on F(x) are necessary and sufficient to insure that there exists
g(x) € C(X) such that

(1) $ = (B.4.), and
) N(g) = K.

First we will show why a solution to problem 1.3 yields a solution to
problem 1.2,

To do this, we will first show that if S = (B.4.),, then N *(g) = N,™
(to be defined). Then we will show that if § = (B.4.), , there exists a function
gn(x) € C(X) such that (1) § = (B.4.), and (2) N.*(g) = N, This will
prove that S is a set of best approximations if, and only if, there exists
g(x) € C(X) such that S = (B.4.), and N *(g) = N

To begin, let

N = sup [$[max a - F(x) — min a - F(x)]].
xeX acs acs

Lemma 1.4. IfS = (B.A.),, then N,*(g) > N,

Proof. For fixed x and all ae S, — N, *(g) < g(x) — a - F(x) < N, *(g).
Thus, —N,*(g) + maxeesa - F(x) < g(x) < N.*(g) + mingesa - F(x). Hence,
for each xe X, N,*(g) > ¥(max,sa - F(x) — min,.g a - F(x)). Thus,
N.*(g) = N.™.

LemMMA 1.5. max,ga-F(x) and min,ga - F(x) are both contained
in C(X).

Proof. Because X is compact, F(x) is uniformly continuous on X. Thus,
given € > 0, there exists a @ such that |a| - | F(x) — F(y)| < € whenever
|x —y|<odandaces.

Now, if |[x —y| <0, [a-F(x) —a-F(y) <la| |Fx)—F)) <e
Hence,

ma;(a-F(x)>masxa-F(y)—e )
and

max a - F(y) > max a * F(x) — e. 2)

acs acsS

Therefore, | max, g a - F(x) — maXx,.sa - F(y)| < . The proof is identical
for min, g a - F(x).

THEOREM 1.6. If S = (B.A4.),, there is a function g,(x) € C(X) such that
() S = (B.4.),, and (2) N.*(gn) = N,
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Proof. Let
Ty = [xe X glx) = —N. 4 maxa - F(x)],

T, =[xeX: g(x) < N”+ mi? a - F(x)].

Ty and T, are closed subsets of X. Further, since
N/ + mina- F(x) = —N/” 4+ max a - F(x),
acs acs

we have T, U T, = X.
Define g,,(x) as follows:

min[g(x), N + mi;l a - F(x)], forxeT,,

gnlx) = max[g(x), —~N/™ + max a - F(x)], forxeT,.

gm(x) is well defined as g(x) on T, N T,, and it is easily verified that
gm(x) € C(X).

It can be seen that | g.(x) — g(x)l < N,*(g) — N,”. Further,
— N, + max,.sa- F(x) < gn(x) < N™ + min,es a - F(x), and, hence, if
acs, | gn(x) —a F(x)| < N.™

If a¢S, there exists an x, € X such that | g(x,) — a - F(x,)| > N .*(g).
Thus | gu(xs) — a - F(x,)l = | gu(x,) — g(xa) + g(xa) — a « F(x,)| =
| g(xa) —a: F(xa)| - I gm(xa) - g(xa)| > Nc*(g) - (Nc*(g) - Ncm) = Ncm~
Thus, if a ¢S, || g,.(x) — a * F(x)|| > N,

If a S, there exists an x, such that | g(x,) — a - F(x,)] = N.*(g), and
an argument similar to the one above shows that, in this case,
| gm(xa) — a - F(x,)| = N,/ This completes the proof.

2. § will always stand for a compact convex set in R”. If S contains the
origin, we will let L(S) denote the smallest linear space containing S.

It is known that S has a nonempty interior relative to L(S). From now on,
for convenience, we will assume that O is an interior point of S relative
to L(S). The justification for this assumption lies in the fact that the property
of being a set of best approximations is maintained by translation:

LemMMA 2.1. S = (B.A.), and N *(g) = K if, and only if,
S+ a* = (B.A)yrarF and NXg-+a* F)= K
Proof. This is a direct consequence of the equality

lla-F(x) — g = llla + a*) - F(x) — (g(x) + a* - F).
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If a* is a boundary point of S relative to L(S), b e L(S), b £ 0, and
b-(@a—a*) =0 for all aeS, then b-(a — a*) = 0 is called a support
hyperplane to S in L(S).

If L(S) £ 0, it is known that through each such boundary point, a*,
there does pass such a support hyperplane.

From this it is clear that if L(S) 54 O, thereisa be L(S)such that | b| = 1
and such that b - (@ — a*) > Oforall g € S. Such a b will be called an inward
unit normal.

At each boundary point of S relative to L(S) choose a unit inward normal
Call the set of these inward normals a container of S relative to L(S). See
Figs. 1, 2 for a vector interpretation. If L(S) = 0, define the empty set to be
the only container of S relative to L(S).

FIGURE 1 FIGURE 2

DEerINITION 2.2. A set, C(S), in R™ is a container of S if it is the union of
a container of S relative to L(S) and the set of all unit vectors in L{S)*.

Notation.

1. L(S, b): The smallest linear space containing S and b;

L(b): The smallest linear space containing b.
2. F5(x): The projection of F(x) on L(S);

F5¥(x): The projection on L(S, b);

F®(x): The projection on L(b).

Similarly, if T € R, the respective projections are 75, T5:?, T°.
3. If r C R*, 75 will denote the set

TS,b
[Tﬁi’T :Te T, 75 75 0]
4. P: The closure of P;
% P: The complement of P.
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5. F(Q): The image of Q under F;
6. Ex(S) = [x € X : }(max,.sa - F(x) — min,.sa - F(x)) = N.™].

If  CR", to express the fact that there is a container of S in the set
[(T/| T|): Ter, T+ 0}, one might say that = enfolds S. More generally:

DEerFINITION 2.3, A set 7 C R"is said to enfold S if there exists a container,
C(S), of S such that b e 75° for all b € C(S).

3. Let S be a compact convex set containing 0 as an interior point relative
to L(S), and let K > N,™.

THEOREM 3.1. A necessary and sufficient condition for the existence of
g(x) € C(X) such that
1) § = (B.A.), and
2) NX(g) =
is that there exist two closed sets Q, , Qs , in X, with the following properties:
) ONQe= g ifK>N"
01N Q.= EXS)if K= N,
(i) There exists an xo € O, U Q, such that F(x,) € L(S)*.
(iii) F(Q,) Y (—F(Qy)) enfolds S.

First, we prove:

LemmA 3.2, If 0eS and S = (B.A.),, there is an x,€ X such that
F(xo) € L(S)* and | g(x,)l = N,*(g).
Proof. Let{a,,a,,..., a, -} be a countable dense subset of S. Since S is

compact and convex, it is easily shown that ¥_; a,/2" € S. Thus there is
an x, € X such that

( i ‘;") F(xo) — g(x0) | = N.*(g).
n=1
Hence,
N*(g) = (il 2n) F(xy) — g(xo) i a, -F(xoz)n— g(xp)

Z l ay F(xo) - g(xo)l Z *(g) =N *(g)

This implies that for all , | a,, - F(x,) — g(xo)| = N.*(g) and a,, - F(x,) — g(x,)
has a constant sign. Hence, a, - F(x,) = a,, * F(x,) for all m, n. Thus, since
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F(x,) - a is a continuous function of @ on S and a constant on a dense subset
of S, it must be constant on S. Since O € S, this establishes the resuit.

Proof of Theorem 3.1.

Sufficiency: Define a function A(x) on Q;, U Q, as follows:

K+ mi?a-F(x), xeQ,

h(x) = —K + max a - F(x), xeQ,.

h(x) is well defined; for if K = N,™, the two definitions coincide on @; N Q, .

Since A(x) is a continuous function on a closed subset of X, it is easy to
show, using the Tietze Extension Theorem, that it can be extended to a
continuous function, g(x), on the whole of X, satisfying

—K + max a cFx) < glx) < K+ mi;l a - F(x).

Thus, for ae S, || g(x) — a - F(x)|| < K.

Since x,€ O, U @Q,, it follows that | g(x,)| = K. Hence, for ac S,
t g(xo) — a - F(x,)| = K. Thus, if ae S, | g(x) — a - F(x)|| = K.

If d¢ L(S), then d = rb + v, where r <0, |b| =1, be L(S)", and
ve L(S). Since F(Q,) U (—F(Q,)) enfolds S, there is a sequence (T,),
T, € F(Q;) v (—F(Q5)), such that

TS

T

b.

But 75 = T,5 4 T,t. Therefore,

TnS _|_ Tnb
Spss s b
This implies that
| T.5 | -
T3]

0,

and, hence, that
| T,.5 |
S . 0 Y|}
TS+ 1721

It follows that

- 0. (3.3)
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Further,
(TS 4+ T - b
—W— — 1. 3.4
Thus, for large n, T,2 - b =T, - b > 0.
There exists an M > 0 such thatif ae S, |v —a| < M.
Thus, by (3.3) and (3.4), there is an m such that

| TuS| _—r
| T | M

and
Tt -b >0,

So,foraeS,(v-a) T,=@w-a)- T, <M|T,° | <-r|\T,| =T, - b.
Therefore, ifacS,d T, = @b +v) - T,<a T,.
If T, € F(Q,), there exists an x,, € Q, such that T,, = F(x,,). Therefore,

d- F(xm) - g(xm) < rrgsn a: F(xm) - g(xm) = —K.

If T,, € —F(Q,), there exists an x,, € Q, such that 7,, = —F(x,,), and
d - F(xn) — g(xp) > max a - F(x,) — g(xn) = K.

Thus, || d - F(x) — g(x)|| > K.

Let de L(S), d¢S. Then d = ra*, where a* is a boundary point of S
relative to L(S) and r > 1.

Since F(Q,) U (—F(Q,)) enfolds S, there exists b€ L(S) and a sequence
(Tn)’ Tn € F(Ql) Y (_F(Qz))a such that

b-a—a*) =0 forallaesS,
and
TS,b

75e P

Because 0 is an interior point of § relative to L(S), b-(0 — a*) > 0.
Thus, b-d = b-ra* <b-a* = min, ¢b - a. Since min,.¢b - a is a con-
tinuous function of b, there exists an » such that

T;f.b . TS,b
d <min —2%—-q.
| TS| aes | TSP |

Hence, T5? - d < min,.s T - a. But since b, d € L(S), we have

T,-d<<minT,:a.

acs
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If T,eF(Q,), there is an x,€ Q, such that 7, = F(x,). Hence,
F(xn) d — g(xn) < minaeSF(xn) ta— g(xn) = —K.

If T, € —F(Q,), there is an x,, € Q, such that —F(x,) - d < min,.s —F(x,) - a,
ie.,

d- F(x,) > —melgl (—F(xp))-a= max a - F(x,).

Thus,
d - Flx,) — g(xn) > max a - F(x,) — g(xn) = K.

Hence, || d - F(x) — g(x)|| > K.

Necessity: Because N, *(g) = K, and because 0 is an interior point of S
relative to L(S), we have

—K < —K - ma;ca Fx) <gx) < K+ mi;la -F(x) < K. (3.5
ac ac

Let
O*=[xeX:g(x) =K+ mi;la * F(x)],

O, =[xeX glx) = —K+ max a » F(x)).
We now proceed to define Q; and Q, .

Case 1: K > N/ In this case,

K + mina - F(x) > —K 4+ max a - F(x).
aceS acs

Thus, Q,* and Q,* are disjoint closed sets.

Hence, there are two open sets, P, and P, , such that 0,*C P, , 3,*C P,
and P,N P, = g.

Define Q; = P,and Q, = P, .

CaAsE 2: K= N/~ 1If S consists of the single point 0, then N, = 0,
g(x) =0, and Q;* = Q,* = X. Define O, = @, = X.

If S0, Ny~ 0. For otherwise, there would exist a non-zero a* € S
such that max,.sa - F(x) = a* - F(x) = 0 - F(x) = mingga * F(x). This
contradicts the fact that the components of F are linearly independent.

On EL(S) = Q,* N Q,*, ¥(max,csa - F(x) — mingesa  F(x)) = N > 0.
This implies that FS(x) == 0 on Eg(S). Hence, | FS(x)| attains a non-zero
minimum on E4(S). Let e be this minimum.
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Now, because X is compact, | F5(x)| is uniformly continuous on X. Thus,
there is an open set PO Q,* N Q,* such that | FS(x)| > ¢/2 on P.

Q,* and €P N Q,* are disjoint closed sets. Hence, there is an open set P, ,
(P n Q,*)CP,, such that P, n 0,* = . Similarly, since P N Q,*
and P, U Q,* are disjoint closed sets, there is an open set P, , (PN Q,*) C P,,
such that P, N (Q,* U P) = o.

Define Q, = P, U 0,* and Q, = P, U Q,*. Then Q, and Q, are closed
and Q; N Q, = 0,* N Q,* = ELS). Further, if FS(x) = 0 and xe Q;*,
then xe (¥P N Q,*)CP,CP,C Q,. Thus x is an interior point of Q, .
Similarly, if x € @,* and F5(x) = 0, x is interior to Q, .

To summarize: If K> N/, then QN Q, = o. If K= N/, then
0, N Qy, = E(S). And in any case, if x € Q,;* and F5(x) = 0, then x is an
interior point of Q; .

By Lemma (3.2), there exists an x, such that F(x,) € L(S)*. Further,
| g(xo)l = K. Thus, xo€ 0,*U 0,*C 0, U 0, .

We now need only to show that F(Q,) W (—F(Q,)) enfolds S.

First, let be L(S)*, | b| = 1, and let ¢, — 0, €, > 0. Since —e,b ¢ L(S),
there exists an x, € X such that | —e,b - F(x,) — g(x,)| > K. Thus, for all
a €S, either

() —ewb - Flxy) — g(xn) < —K < a - F(x,) — g(xy),
or (3.6)
(i) g(xn) + (—€x) b (—F(x,)) < —K < g(xa) + a * (—F(xy)).

If (i) holds, let T,, = F(x,). If (ii) holds, let T,, = —F(x,). So for all g€ S,
—eb-T,<a-T,.Hence,e,b-T,>0-T,=0.Thus,e,b - T, = ¢, | T,,? |.
Therefore, €, | T,0 | > —a - T, = —a - T,5.

Because O is an interior point relative to L(S), there is a 8 > 0 such that,
for all n, —B(T,5/| T,.5 ) e S, T,,° # 0.

Therefore, €, | T,° | > B| T,5|. (Note that this inequality is also valid
if T, = 0.) Hence,

| T 5|
A

and, therefore
| T8

1755 0.
Thus,
T .| TS Al . T
1 = Lim TS| < Lim 1755 | + Lim | 757 Lim | TS5 ] < 1.
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It follows that

Lim TS | 1.
As a consequence,
LTS Y . TS . TP T
Lim 7] = lerfb—[ = Llrn| T + lerTb—l = L1m|T—b]
and, since €,b - T,, >0,
T
Ty
Therefore,
T5?
TTSE] — b.
n

It must now be shown that T, € F(Q,) YV (—F(Q,)).
With no loss, it can be assumed that x,, — x*. Since 0 € S,

K =10 F(x*) — g(x*)| = Lim | —e,b - F(x,) — g(x,)| = K.

Thus, | g(x*)] = K. Therefore, by (3.5), x* e 0,* U Q,*.

If F3(x*) =~ O, there is an a* € S such that a* - F(x*) has the same sign as
—g(x*). But then, |a* - F(x*) — g(x*)| > K. Hence, FS(x*) = 0. This
implies that x* is an interior point of Q; U Q, . Further, if x* € Q,*, (3.5)
implies that g(x*) = K. Thus, by (3.6), for large n, T,, = F(x,). So with no
loss, it can be assumed that T, € F(Q,). Similarly, if x* € Q,*, then for large »,
T, = —F(x,). So, again, with no loss it can be assumed that T, € —F(Q,).

To complete the proof, we must show that for each boundary point a*
of S relative to L(S), there is a b € L(S) such that

() b-(a—a*) =0,forallacsS, and
(2) There is a sequence (T,), T, € F(Q,) Y (—F(Q,)), such that

T,,f b Tns

2 s

Let a,-—>a* a,cL(S), a,¢S. There exists an x, e X such that
| a, - F(x,) — g(x,)| > K. For all a e §, either

(1) a, - F(xn) - g(xn) < —-K<a- F(xn) - g(x'n),
or 3.7)
(i) g(xn) + ap - (—F(xp) < —K < g(xa) + a - (—F(x,)).

If (i) bolds, let T," = F(x,). If (ii) holds, let T,,) = —F(x,).



WHEN IS A SET A SET OF BEST APPROXIMATIONS 193

SoforallaeS,a, T, <a-T,. Thus, a, T, <0. Therefore, T, == 0.
Thus, for ac S,

7,5
(a — an) . W > 0.

With no loss, it can be assumed that 75/| T3 | converges to b € L(S), and also
that x,, — x*. Thus, (a — a*) - b = 0, and, further, K = | a* - F(x*) — g(x™*)|.
If a* - F(x*) — g(x*) = —K, (3.5) implies that x* € 0, * and (3.7) implies
that for large n, T,)) = F(x,).
If F5(x*) = 0, x* is interior to Q,. We can assume that T, € F(Q,),
for all . In this case, define T,, = T,’. If F5(x*) £ 0, then

b — F5(x*)
| FS(x*)]

For all n, define T, = F(x*) € F(Q,).

If a* - F(x*) — g(x*) = K, then x* € Q, and for large n, T,/ = —F(x,).
If FS(x*) = 0, we define, as above, T, = T, .

If FS(x*) £ 0, for all n, let T,, = —F(x*) € —F(Q,).
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