JOURNAL OF APPROXIMATION THEORY 3, 183-193 (1970)

Necessary and Sufficient Conditions for a Compact Convex Set to be a Set of Best Approximations

PETER LINDSTROM

Boston University, Boston, Massachusetts Received August 26, 1968

1. X will be a compact metric space, and C(X), the space of real valued continuous functions on X. For $g(x) \in C(X)$, we define

$$||g(x)|| = \max_{x \in X} |g(x)|.$$

Approximation of functions in C(X) will be by linear combinations of *n* given, linearly independent continuous functions, $f_1(x), f_2(x), \dots, f_n(x)$. A linear combination of the $f_i(x)$ will be represented by $a \cdot F(x)$, where $a \in \mathbb{R}^n$ and $F(x) = [f_1(x), f_2(x), \dots, f_n(x)]$. Thus $a \cdot F(x)$ is the usual dot product. Also, if $a \in \mathbb{R}^n$, |a| will denote $(a \cdot a)^{1/2}$.

For a given $g(x) \in C(X)$, the infimum of $||a \cdot F(x) - g(x)||$ as a ranges over \mathbb{R}^n will be denoted by $N_c^*(g)$.

In the parameter space, \mathbb{R}^n , the set of best approximations, $(B.A.)_g$, for g(x), is defined by

$$(B.A.)_g = [a \in \mathbb{R}^n : ||a \cdot F(x) - g(x)|| = N_c^*(g)].$$

It is known that $(B.A.)_g$ is a nonempty compact convex set. This suggests an inverse problem which we will solve. But first,

DEFINITION 1.1. A set $S \subset \mathbb{R}^n$ is called a set of best approximations if there exists a $g(x) \in C(X)$ such that $S = (B.A.)_g$.

PROBLEM 1.2. Given a compact convex set $S \subset \mathbb{R}^n$, what conditions, imposed on F(x), are necessary and sufficient for S to be a set of best approximations.

In the process of solving problem (1.2), we will solve a slightly more general problem. It is

PROBLEM 1.3. Given a compact convex set S and a constant K, what

conditions on F(x) are necessary and sufficient to insure that there exists $g(x) \in C(X)$ such that

(1) $S = (B.A.)_{g}$ and

(2) $N_c^*(g) = K$.

First we will show why a solution to problem 1.3 yields a solution to problem 1.2.

To do this, we will first show that if $S = (B.A.)_g$, then $N_c^*(g) \ge N_c^m$ (to be defined). Then we will show that if $S = (B.A.)_g$, there exists a function $g_m(x) \in C(X)$ such that (1) $S = (B.A.)_{g_m}$ and (2) $N_c^*(g) = N_c^m$. This will prove that S is a set of best approximations if, and only if, there exists $g(x) \in C(X)$ such that $S = (B.A.)_g$ and $N_c^*(g) = N_c^m$.

To begin, let

$$N_c^m = \sup_{x \in X} \left[\frac{1}{2} \left[\max_{a \in S} a \cdot F(x) - \min_{a \in S} a \cdot F(x) \right] \right].$$

LEMMA 1.4. If $S = (B.A.)_g$, then $N_c^*(g) \ge N_c^m$.

Proof. For fixed x and all $a \in S$, $-N_c^*(g) \leq g(x) - a \cdot F(x) \leq N_c^*(g)$. Thus, $-N_c^*(g) + \max_{a \in S} a \cdot F(x) \leq g(x) \leq N_c^*(g) + \min_{a \in S} a \cdot F(x)$. Hence, for each $x \in X$, $N_c^*(g) \geq \frac{1}{2}(\max_{a \in S} a \cdot F(x) - \min_{a \in S} a \cdot F(x))$. Thus, $N_c^*(g) \geq N_c^m$.

LEMMA 1.5. $\max_{a \in S} a \cdot F(x)$ and $\min_{a \in S} a \cdot F(x)$ are both contained in C(X).

Proof. Because X is compact, F(x) is uniformly continuous on X. Thus, given $\epsilon > 0$, there exists a ∂ such that $|a| \cdot |F(x) - F(y)| < \epsilon$ whenever $|x - y| < \partial$ and $a \in S$.

Now, if $|x - y| < \partial$, $|a \cdot F(x) - a \cdot F(y)| \le |a| \cdot |F(x) - F(y)| < \epsilon$. Hence,

$$\max_{a \in S} a \cdot F(x) > \max_{a \in S} a \cdot F(y) - \epsilon \tag{1}$$

and

$$\max_{a \in S} a \cdot F(y) > \max_{a \in S} a \cdot F(x) - \epsilon.$$
(2)

Therefore, $|\max_{a\in S} a \cdot F(x) - \max_{a\in S} a \cdot F(y)| < \epsilon$. The proof is identical for $\min_{a\in S} a \cdot F(x)$.

THEOREM 1.6. If $S = (B.A.)_g$, there is a function $g_m(x) \in C(X)$ such that (1) $S = (B.A.)_{g_m}$ and (2) $N_c^*(g_m) = N_c^m$.

Proof. Let

$$T_1 = [x \in X: g(x) \ge -N_c^m + \max_{a \in S} a \cdot F(x)].$$
$$T_2 = [x \in X: g(x) \le N_c^m + \min_{a \in S} a \cdot F(x)].$$

 T_1 and T_2 are closed subsets of X. Further, since

$$N_c^m + \min_{a \in S} a \cdot F(x) \ge -N_c^m + \max_{a \in S} a \cdot F(x),$$

we have $T_1 \cup T_2 = X$.

Define $g_m(x)$ as follows:

$$g_m(x) = \begin{cases} \min[g(x), & N_c^m + \min_{a \in S} a \cdot F(x)], & \text{for } x \in T_1, \\ \max[g(x), & -N_c^m + \max_{a \in S} a \cdot F(x)], & \text{for } x \in T_2. \end{cases}$$

 $g_m(x)$ is well defined as g(x) on $T_1 \cap T_2$, and it is easily verified that $g_m(x) \in C(X)$.

It can be seen that $||g_m(x) - g(x)|| \leq N_c^*(g) - N_c^m$. Further, $-N_c^m + \max_{a \in S} a \cdot F(x) \leq g_m(x) \leq N_c^m + \min_{a \in S} a \cdot F(x)$, and, hence, if $a \in S$, $||g_m(x) - a \cdot F(x)|| \leq N_c^m$.

If $a \notin S$, there exists an $x_a \in X$ such that $|g(x_a) - a \cdot F(x_a)| > N_c^*(g)$. Thus $|g_m(x_a) - a \cdot F(x_a)| = |g_m(x_a) - g(x_a) + g(x_a) - a \cdot F(x_a)| \ge |g(x_a) - a \cdot F(x_a)| - |g_m(x_a) - g(x_a)| > N_c^*(g) - (N_c^*(g) - N_c^m) = N_c^m$. Thus, if $a \notin S$, $||g_m(x) - a \cdot F(x)|| > N_c^m$.

If $a \in S$, there exists an x_a such that $|g(x_a) - a \cdot F(x_a)| = N_c^*(g)$, and an argument similar to the one above shows that, in this case, $|g_m(x_a) - a \cdot F(x_a)| = N_c^m$. This completes the proof.

2. S will always stand for a compact convex set in \mathbb{R}^n . If S contains the origin, we will let L(S) denote the smallest linear space containing S.

It is known that S has a nonempty interior relative to L(S). From now on, for convenience, we will assume that 0 is an interior point of S relative to L(S). The justification for this assumption lies in the fact that the property of being a set of best approximations is maintained by translation:

LEMMA 2.1.
$$S = (B.A.)_g$$
 and $N_c^*(g) = K$ if, and only if,

$$S + a^* = (B.A.)_{g+a^* \cdot F}$$
 and $N_c^*(g + a^* \cdot F) = K.$

Proof. This is a direct consequence of the equality

$$||a \cdot F(x) - g(x)|| = ||(a + a^*) \cdot F(x) - (g(x) + a^* \cdot F(x))||.$$

LINDSTROM

If a^* is a boundary point of S relative to L(S), $b \in L(S)$, $b \neq 0$, and $b \cdot (a - a^*) \ge 0$ for all $a \in S$, then $b \cdot (a - a^*) = 0$ is called a support hyperplane to S in L(S).

If $L(S) \neq 0$, it is known that through each such boundary point, a^* , there does pass such a support hyperplane.

From this it is clear that if $L(S) \neq 0$, there is a $b \in L(S)$ such that |b| = 1 and such that $b \cdot (a - a^*) \ge 0$ for all $a \in S$. Such a b will be called an inward unit normal.

At each boundary point of S relative to L(S) choose a unit inward normal Call the set of these inward normals a *container of S relative to* L(S). See Figs. 1, 2 for a vector interpretation. If L(S) = 0, define the empty set to be the only container of S relative to L(S).

DEFINITION 2.2. A set, C(S), in \mathbb{R}^n is a container of S if it is the union of a container of S relative to L(S) and the set of all unit vectors in $L(S)^{\perp}$.

Notation.

- L(S, b): The smallest linear space containing S and b;
 L(b): The smallest linear space containing b.
- 2. $F^{S}(x)$: The projection of F(x) on L(S); $F^{S,b}(x)$: The projection on L(S, b); $F^{b}(x)$: The projection on L(b). Similarly, if $T \in \mathbb{R}^{n}$, the respective projections are T^{S} , $T^{S,b}$, T^{b} .
- 3. If $\tau \subset \mathbb{R}^n$, $\tau_u^{S,b}$ will denote the set

$$\Big[\frac{T^{S,b}}{\mid T^{S,b}\mid}:T\in\tau,\ T^{S,b}\neq0\Big].$$

4. P: The closure of P;
%P: The complement of P.

5. F(Q): The image of Q under F;

6. $E_F(S) = [x \in X : \frac{1}{2}(\max_{a \in S} a \cdot F(x) - \min_{a \in S} a \cdot F(x)) = N_c^m].$

If $\tau \subset \mathbb{R}^n$, to express the fact that there is a container of S in the set $[(T/|T|): T \in \tau, T \neq 0]$, one might say that τ enfolds S. More generally:

DEFINITION 2.3. A set $\tau \subset \mathbb{R}^n$ is said to *enfold* S if there exists a container, C(S), of S such that $b \in \overline{\tau_u^{S,b}}$ for all $b \in C(S)$.

3. Let S be a compact convex set containing 0 as an interior point relative to L(S), and let $K \ge N_c^m$.

THEOREM 3.1. A necessary and sufficient condition for the existence of $g(x) \in C(X)$ such that

1) $S = (B.A.)_g$ and

2)
$$N_c^*(g) = K$$

is that there exist two closed sets Q_1 , Q_2 , in X, with the following properties:

- (i) $Q_1 \cap Q_2 = \emptyset$ if $K > N_c^m$, $Q_1 \cap Q_2 = E_F(S)$ if $K = N_c^m$.
- (ii) There exists an $x_0 \in Q_1 \cup Q_2$ such that $F(x_0) \in L(S)^{\perp}$.
- (iii) $F(Q_1) \cup (-F(Q_2))$ enfolds S.

First, we prove:

LEMMA 3.2. If $0 \in S$ and $S = (B.A.)_g$, there is an $x_0 \in X$ such that $F(x_0) \in L(S)^{\perp}$ and $|g(x_0)| = N_c^*(g)$.

Proof. Let $\{a_1, a_2, ..., a_n \cdots\}$ be a countable dense subset of S. Since S is compact and convex, it is easily shown that $\sum_{n=1}^{\infty} a_n/2^n \in S$. Thus there is an $x_0 \in X$ such that

$$\left|\left(\sum_{n=1}^{\infty}\frac{a_n}{2^n}\right)\cdot F(x_0)-g(x_0)\right|=N_c^*(g).$$

Hence,

$$N_{c}^{*}(g) = \left| \left(\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}} \right) \cdot F(x_{0}) - g(x_{0}) \right| = \left| \sum_{n=1}^{\infty} \frac{a_{n} \cdot F(x_{0}) - g(x_{0})}{2^{n}} \right|$$
$$\leq \sum_{n=1}^{\infty} \frac{|a_{n} \cdot F(x_{0}) - g(x_{0})|}{2^{n}} \leq \sum_{n=1}^{\infty} \frac{N_{c}^{*}(g)}{2^{n}} = N_{c}^{*}(g).$$

This implies that for all n, $|a_n \cdot F(x_0) - g(x_0)| = N_c^*(g)$ and $a_n \cdot F(x_0) - g(x_0)$ has a constant sign. Hence, $a_n \cdot F(x_0) = a_m \cdot F(x_0)$ for all m, n. Thus, since

LINDSTROM

 $F(x_0) \cdot a$ is a continuous function of a on S and a constant on a dense subset of S, it must be constant on S. Since $0 \in S$, this establishes the result.

Proof of Theorem 3.1.

Sufficiency: Define a function h(x) on $Q_1 \cup Q_2$ as follows:

$$h(x) = \begin{cases} K + \min_{a \in S} a \cdot F(x), & x \in Q_1 \\ -K + \max_{a \in S} a \cdot F(x), & x \in Q_2 \end{cases}.$$

h(x) is well defined; for if $K = N_c^m$, the two definitions coincide on $Q_1 \cap Q_2$.

Since h(x) is a continuous function on a closed subset of X, it is easy to show, using the Tietze Extension Theorem, that it can be extended to a continuous function, g(x), on the whole of X, satisfying

$$-K + \max_{a \in S} a \cdot F(x) \leq g(x) \leq K + \min_{a \in S} a \cdot F(x).$$

Thus, for $a \in S$, $||g(x) - a \cdot F(x)|| \leq K$.

Since $x_0 \in Q_1 \cup Q_2$, it follows that $|g(x_0)| = K$. Hence, for $a \in S$, $|g(x_0) - a \cdot F(x_0)| = K$. Thus, if $a \in S$, $||g(x) - a \cdot F(x)|| = K$.

If $d \notin L(S)$, then d = rb + v, where r < 0, |b| = 1, $b \in L(S)^{\perp}$, and $v \in L(S)$. Since $F(Q_1) \cup (-F(Q_2))$ enfolds S, there is a sequence (T_n) , $T_n \in F(Q_1) \cup (-F(Q_2))$, such that

$$\frac{T_n^{S,b}}{\mid T_n^{S,b}\mid} \to b.$$

But $T_n^{S,b} = T_n^{S} + T_n^{b}$. Therefore,

$$\frac{T_n^{\ S}+T_n^{\ b}}{\mid T_n^{S,b}\mid} \to b.$$

This implies that

$$\frac{\mid T_n^{S}\mid}{\mid T_n^{S,b}\mid} \to 0,$$

and, hence, that

$$\frac{\mid T_n^{S}\mid}{\mid T_n^{S}\mid + \mid T_n^{b}\mid} \to 0.$$

It follows that

$$\frac{|T_n^{S}|}{|T_n^{b}|} \to 0.$$
(3.3)

Further,

$$\frac{(T_n^{\ s} + T_n^{\ b}) \cdot b}{\mid T_n^{\ s, b} \mid} \to 1.$$
(3.4)

Thus, for large *n*, $T_n^b \cdot b = T_n \cdot b > 0$.

There exists an M > 0 such that if $a \in S$, |v - a| < M.

Thus, by (3.3) and (3.4), there is an *m* such that

$$\frac{\mid T_m{}^{s}\mid}{\mid T_m{}^{b}\mid} < \frac{-r}{M}$$

and

$$T_m^b \cdot b > 0.$$

So, for $a \in S$, $(v-a) \cdot T_m = (v-a) \cdot T_m^S \leq M |T_m^S| < -r |T_m^b| = -rT_m \cdot b$. Therefore, if $a \in S$, $d \cdot T_m = (rb+v) \cdot T_m < a \cdot T_m$.

If $T_m \in F(Q_1)$, there exists an $x_m \in Q_1$ such that $T_m = F(x_m)$. Therefore,

$$d \cdot F(x_m) - g(x_m) < \min_{a \in S} a \cdot F(x_m) - g(x_m) = -K$$

If $T_m \in -F(Q_2)$, there exists an $x_m \in Q_2$ such that $T_m = -F(x_m)$, and

$$d \cdot F(x_m) - g(x_m) > \max_{a \in S} a \cdot F(x_m) - g(x_m) = K$$

Thus, $\| d \cdot F(x) - g(x) \| > K$.

Let $d \in L(S)$, $d \notin S$. Then $d = ra^*$, where a^* is a boundary point of S relative to L(S) and r > 1.

Since $F(Q_1) \cup (-F(Q_2))$ enfolds S, there exists $b \in L(S)$ and a sequence $(T_n), T_n \in F(Q_1) \cup (-F(Q_2))$, such that

$$b \cdot (a - a^*) \ge 0$$
 for all $a \in S$,

and

$$\frac{T_n^{S,b}}{\mid T_n^{S,b}\mid} \to b.$$

Because 0 is an interior point of S relative to L(S), $b \cdot (0 - a^*) > 0$. Thus, $b \cdot d = b \cdot ra^* < b \cdot a^* = \min_{a \in S} b \cdot a$. Since $\min_{a \in S} b \cdot a$ is a continuous function of b, there exists an n such that

$$\frac{T_n^{S,b}}{\mid T_n^{S,b}\mid} \cdot d < \min_{a \in S} \frac{T_n^{S,b}}{\mid T_n^{S,b}\mid} \cdot a.$$

Hence, $T_n^{S,b} \cdot d < \min_{a \in S} T_n^{S,b} \cdot a$. But since $b, d \in L(S)$, we have

$$T_n \cdot d < \min_{a \in S} T_n \cdot a.$$

LINDSTROM

If $T_n \in F(Q_1)$, there is an $x_n \in Q_1$ such that $T_n = F(x_n)$. Hence, $F(x_n) \cdot d - g(x_n) < \min_{a \in S} F(x_n) \cdot a - g(x_n) = -K$.

If $T_n \in -F(Q_2)$, there is an $x_n \in Q_2$ such that $-F(x_n) \cdot d < \min_{a \in S} -F(x_n) \cdot a$, i.e.,

$$d \cdot F(x_n) > -\min_{a \in S} (-F(x_n)) \cdot a = \max_{a \in S} a \cdot F(x_n).$$

Thus,

$$d \cdot F(x_n) - g(x_n) > \max_{a \in S} a \cdot F(x_n) - g(x_n) = K.$$

Hence, $|| d \cdot F(x) - g(x) || > K$.

Necessity: Because $N_c^*(g) = K$, and because 0 is an interior point of S relative to L(S), we have

$$-K \leqslant -K + \max_{a \in S} a \cdot F(x) \leqslant g(x) \leqslant K + \min_{a \in S} a \cdot F(x) \leqslant K.$$
 (3.5)

Let

$$Q_1^* = [x \in X: g(x) = K + \min_{a \in S} a \cdot F(x)],$$
$$Q_2^* = [x \in X: g(x) = -K + \max_{a \in S} a \cdot F(x)].$$

We now proceed to define Q_1 and Q_2 .

CASE 1: $K > N_c^m$. In this case,

$$K + \min_{a \in S} a \cdot F(x) > -K + \max_{a \in S} a \cdot F(x).$$

Thus, Q_1^* and Q_2^* are disjoint closed sets.

Hence, there are two open sets, P_1 and P_2 , such that $Q_1^* \subset P_1$, $Q_2^* \subset P_2$ and $\overline{P}_1 \cap \overline{P}_2 = \emptyset$.

Define $Q_1 = \overline{P}_1$ and $Q_2 = \overline{P}_2$.

CASE 2: $K = N_c^m$. If S consists of the single point 0, then $N_c^m = 0$, g(x) = 0, and $Q_1^* = Q_2^* = X$. Define $Q_1 = Q_2 = X$.

If $S \neq 0$, $N_e^m \neq 0$. For otherwise, there would exist a non-zero $a^* \in S$ such that $\max_{a \in S} a \cdot F(x) \equiv a^* \cdot F(x) \equiv 0 \cdot F(x) \equiv \min_{a \in S} a \cdot F(x)$. This contradicts the fact that the components of F are linearly independent.

On $E_F(S) = Q_1^* \cap Q_2^*$, $\frac{1}{2}(\max_{a \in S} a \cdot F(x) - \min_{a \in S} a \cdot F(x)) = N_c^m > 0$. This implies that $F^S(x) \neq 0$ on $E_F(S)$. Hence, $|F^S(x)|$ attains a non-zero minimum on $E_F(S)$. Let ϵ be this minimum.

Now, because X is compact, $|F^{S}(x)|$ is uniformly continuous on X. Thus, there is an open set $P \supset Q_{1}^{*} \cap Q_{2}^{*}$ such that $|F^{S}(x)| > \epsilon/2$ on P.

 Q_2^* and $\mathscr{C}P \cap Q_1^*$ are disjoint closed sets. Hence, there is an open set P_1 , $(\mathscr{C}P \cap Q_1^*) \subseteq P_1$, such that $\overline{P}_1 \cap Q_2^* = \emptyset$. Similarly, since $\mathscr{C}P \cap Q_2^*$ and $\overline{P}_1 \cup Q_1^*$ are disjoint closed sets, there is an open set P_2 , $(\mathscr{C}P \cap Q_2^*) \subseteq P_2$, such that $\overline{P}_2 \cap (Q_1^* \cup \overline{P}_1) = \emptyset$.

Define $Q_1 = \overline{P}_1 \cup Q_1^*$ and $Q_2 = \overline{P}_2 \cup Q_2^*$. Then Q_1 and Q_2 are closed and $Q_1 \cap Q_2 = Q_1^* \cap Q_2^* = E_F(S)$. Further, if $F^S(x) = 0$ and $x \in Q_1^*$, then $x \in (\mathscr{C}P \cap Q_1^*) \subset P_1 \subset \overline{P}_1 \subset Q_1$. Thus x is an interior point of Q_1 . Similarly, if $x \in Q_2^*$ and $F^S(x) = 0$, x is interior to Q_2 .

To summarize: If $K > N_c^m$, then $Q_1 \cap Q_2 = \emptyset$. If $K = N_c^m$, then $Q_1 \cap Q_2 = E_F(S)$. And in any case, if $x \in Q_i^*$ and $F^S(x) = 0$, then x is an interior point of Q_i .

By Lemma (3.2), there exists an x_0 such that $F(x_0) \in L(S)^{\perp}$. Further, $|g(x_0)| = K$. Thus, $x_0 \in Q_1^* \cup Q_2^* \subset Q_1 \cup Q_2$.

We now need only to show that $F(Q_1) \cup (-F(Q_2))$ enfolds S.

First, let $b \in L(S)^{\perp}$, |b| = 1, and let $\epsilon_n \to 0$, $\epsilon_n > 0$. Since $-\epsilon_n b \notin L(S)$, there exists an $x_n \in X$ such that $|-\epsilon_n b \cdot F(x_n) - g(x_n)| > K$. Thus, for all $a \in S$, either

(i)
$$-\epsilon_n b \cdot F(x_n) - g(x_n) < -K \leq a \cdot F(x_n) - g(x_n),$$

(ii) $g(x_n) + (-\epsilon_n) b \cdot (-F(x_n)) < -K \leq g(x_n) + a \cdot (-F(x_n)).$
(3.6)

If (i) holds, let $T_n = F(x_n)$. If (ii) holds, let $T_n = -F(x_n)$. So for all $a \in S$, $-\epsilon_n b \cdot T_n < a \cdot T_n$. Hence, $\epsilon_n b \cdot T_n > 0 \cdot T_n = 0$. Thus, $\epsilon_n b \cdot T_n = \epsilon_n | T_n^b |$. Therefore, $\epsilon_n | T_n^b | > -a \cdot T_n = -a \cdot T_n^S$.

Because 0 is an interior point relative to L(S), there is a $\beta > 0$ such that, for all $n, -\beta(T_n^{S}/|T_n^{S}|) \in S, T_n^{S} \neq 0$.

Therefore, $\epsilon_n |T_n^b| > \beta |T_n^S|$. (Note that this inequality is also valid if $T_n^S = 0$.) Hence,

$$\frac{|T_n^{s}|}{|T_n^{b}|} \to 0$$

and, therefore

$$\frac{\mid T_n^{s} \mid}{\mid T^{s,b} \mid} \to 0.$$

Thus,

or

$$1 = \operatorname{Lim} \frac{|T_n^{S,b}|}{|T_n^{S,b}|} \leq \operatorname{Lim} \frac{|T_n^{S}|}{|T_n^{S,b}|} + \operatorname{Lim} \frac{|T_n^{b}|}{|T_n^{S,b}|} = \operatorname{Lim} \frac{|T_n^{b}|}{|T_n^{S,b}|} \leq 1.$$

It follows that

$$\operatorname{Lim}\frac{|T_n^b|}{|T_n^{s,b}|} = 1.$$

As a consequence,

$$\operatorname{Lim} \frac{T_n^{S,b}}{|T_n^{S,b}|} = \operatorname{Lim} \frac{T_n^{S,b}}{|T_n^{b}|} = \operatorname{Lim} \frac{T_n^{S}}{|T_n^{b}|} + \operatorname{Lim} \frac{T_n^{b}}{|T_n^{b}|} = \operatorname{Lim} \frac{T_n^{b}}{|T_n^{b}|}$$

and, since $\epsilon_n b \cdot T_n > 0$,

$$\frac{T_n^{\ b}}{\mid T_n^{\ b}\mid} = b.$$

Therefore,

$$\frac{T_n^{S,b}}{\mid T_n^{S,b}\mid} \to b$$

It must now be shown that $T_n \in F(Q_1) \cup (-F(Q_2))$. With no loss, it can be assumed that $x_n \to x^*$. Since $0 \in S$,

$$K \ge |0 \cdot F(x^*) - g(x^*)| = \operatorname{Lim} |-\epsilon_n b \cdot F(x_n) - g(x_n)| \ge K.$$

Thus, $|g(x^*)| = K$. Therefore, by (3.5), $x^* \in Q_1^* \cup Q_2^*$.

If $F^{S}(x^{*}) \neq 0$, there is an $a^{*} \in S$ such that $a^{*} \cdot F(x^{*})$ has the same sign as $-g(x^{*})$. But then, $|a^{*} \cdot F(x^{*}) - g(x^{*})| > K$. Hence, $F^{S}(x^{*}) = 0$. This implies that x^{*} is an interior point of $Q_{1} \cup Q_{2}$. Further, if $x^{*} \in Q_{1}^{*}$, (3.5) implies that $g(x^{*}) = K$. Thus, by (3.6), for large n, $T_{n} = F(x_{n})$. So with no loss, it can be assumed that $T_{n} \in F(Q_{1})$. Similarly, if $x^{*} \in Q_{2}^{*}$, then for large n, $T_{n} = -F(x_{n})$. So, again, with no loss it can be assumed that $T_{n} \in -F(Q_{2})$.

To complete the proof, we must show that for each boundary point a^* of S relative to L(S), there is a $b \in L(S)$ such that

- (1) $b \cdot (a a^*) \ge 0$, for all $a \in S$, and
- (2) There is a sequence (T_n) , $T_n \in F(Q_1) \cup (-F(Q_2))$, such that

$$\frac{T_n^{S,b}}{\mid T_n^{S,b}\mid} = \frac{T_n^{S}}{\mid T_n^{S}\mid} \to b.$$

Let $a_n \to a^*$, $a_n \in L(S)$, $a_n \notin S$. There exists an $x_n \in X$ such that $|a_n \cdot F(x_n) - g(x_n)| > K$. For all $a \in S$, either

(i)
$$a_n \cdot F(x_n) - g(x_n) < -K \leq a \cdot F(x_n) - g(x_n)$$
,

or

(ii)
$$g(x_n) + a_n \cdot (-F(x_n)) < -K \leq g(x_n) + a \cdot (-F(x_n)).$$

(3.7)

If (i) holds, let $T_n' = F(x_n)$. If (ii) holds, let $T_n' = -F(x_n)$.

So for all $a \in S$, $a_n \cdot T_n' < a \cdot T_n'$. Thus, $a_n \cdot T_n' < 0$. Therefore, $T_n' \neq 0$. Thus, for $a \in S$,

$$(a-a_n)\cdot\frac{T_n'^S}{|T_n'^S|}>0.$$

With no loss, it can be assumed that $T'_n^{S}||T'_n^{S}|$ converges to $b \in L(S)$, and also that $x_n \to x^*$. Thus, $(a - a^*) \cdot b \ge 0$, and, further, $K = |a^* \cdot F(x^*) - g(x^*)|$. If $a^* \cdot F(x^*) - g(x^*) = -K$, (3.5) implies that $x^* \in Q_1^*$ and (3.7) implies that for large n, $T'_n = F(x_n)$.

If $F^{s}(x^{*}) = 0$, x^{*} is interior to Q_{1} . We can assume that $T_{n}' \in F(Q_{1})$, for all *n*. In this case, define $T_{n} = T_{n}'$. If $F^{s}(x^{*}) \neq 0$, then

$$b=\frac{F^{S}(x^{*})}{|F^{S}(x^{*})|}.$$

For all *n*, define $T_n = F(x^*) \in F(Q_1)$.

If $a^* \cdot F(x^*) - g(x^*) = K$, then $x^* \in Q_2$ and for large n, $T_n' = -F(x_n)$. If $F^S(x^*) = 0$, we define, as above, $T_n = T_n'$.

If $F^{S}(x^{*}) \neq 0$, for all n, let $T_{n} = -F(x^{*}) \in -F(Q_{2})$.

References

- 1. H. EGGLESTON, (1958), Convexity, Cambridge University Press, Cambridge, England.
- P. LINDSTROM, (1968), An Inverse Problem in the Theory of Uniform Linear Approximation, Boston University Thesis.